NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

online casinos in ontario | players paradise slots | black mummy slot | slot bahis siteleri | 777 slots casino | saipan island casino | city of games slots baccarat | sliding door slot | y8 2 người | casino ở hà nội | golden hoyeah slots hack | bán cá hổ bắc tphcm | cherry love slot machine | augsburg đấu với dortmund | big slot wins | truyện ngôn tinh | best casino guide | plaza hotel and casino las vegas | western slots | casinos online con bonos gratis sin deposito | poipet resort casino | code football master 2 vn mới nhất | casino slot games | agen slot online terpercaya | cú đấm máu | hotels with casinos | jetspin casino | judi casino online | chuyen nhuong bong da anh | lô gan bình dương | casino software provider | 1 slot nghĩa là gì | slot machine template free | monte carlo casino online | app mod skin liên quân | smart card slot | online casino real money | qh88 casino ski | unity slot machine source code | casino chau doc | tai game naruto đại chiến | maquinas de casino trucos | oshi casino | đánh bài casino trực tuyến | sx minhngoc net | kqxsdaklak | d365 | slot reds | casino fh | evowar io |