NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

2 số cuối đặc biệt | soi cầu lô đề - cam kết 100 ăn chắc | slots and games | las vegas casino bankruptcies | slot diffuser sizes | casino in bangkok pattaya | eimi fukada đến việt nam | lich bong da u19 dong nam a 2022 | casino night attire | rồng vàng slot | casino en linea peru | tải shopee | slot crazy | casinos gratuitos | james bond casino | banthang vip | bảng đặc biệt 500 ngày | 12vegas casino | free slots 777 games | event slot | asian casino game | dell vostro 5470 ram slot | game bai doi thuong lang vui choi | bet247 casino | ketqua net 60 ngày | xhamster mobile | thống kê giải đặc biệt hai số cuối | soicau3s | ok88 | agree gì | sxmnt2 | k8 casino review | online casino slots real money | live house casino | najlepsie online casino | 888 casino online | unibet casino online | 2xsport | quay slot | real casino slot machines | v9vet | quy lộ tập 6 | rắn số mấy | best uk slots |