NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino royale vietsub | starspins casino | đề về 11 hôm sau đánh con gì | xoilac1 | burning hot slot | magic boxes slot | dubai palace casino cancun | sx minhngoc net | casino bank | lịch thi đấu v lich 2024 | slot minecraft | around the world slot | pink elephant slot | minecraft 1 18 0 apk | truyện tranh sex màu | m88 vin link | sxmnt2 | bao lô 100k trúng bao nhiêu | tiem vang kim hung quan 5 | online slots welcome bonus | bachkimgiaoan | soi cầu 247 me miễn phí | travian building slot numbers | truyen ngon tinh hay | fifa nhật bản apk | hack casino | casino việt nam ở đâu | online casino providers | no deposit bonus casino australia | casino valkenburg | rocky gap casino maryland | giải vô địch thổ nhĩ kỳ | live casino usa | all slots canada | cách xóa trang trống trong word | phatloc | casino io | dự đoán xsmb hom nay | all casino | quay hũ slot uw88 | same day withdrawal online casinos | quay thử xổ số đà nẵng giờ hoàng đạo | mega moolah slot | montezuma slot | vvn88 | beach life slot |