NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

trangchu24h | top casino games | casino royale | game slot | tai zing speed | sunrise casino nha trang | gói cước wifi viettel | diamond empire slot | bejeweled slot machine | biggest online casino uk | venus casino | augsburg đấu với dortmund | chuyển từ word sang excel | v slot wheels | cool play casino | casino bmt | exciter 135 giá bao nhiêu | slot weld | bd soi keo | santastic slots | 4399 nau an | vua hu | ketquaxoso miennam thu 6 | 777 slots casino | casino gangster | highest paying online casino | zeus casino | lê bống lộ video | tải minecraft 1 19 miễn phí | gala casino 10 pound free | slot online asia | red flag fleet slot | blue chip casino hotel and spa | best slots in atlantic city | xsmb 568 vn | josé dinis aveiro | mobile slots pay by phone bill | cherry jackpot casino no deposit bonus | slot reds | sdg777 | tv casino | hai số cuối giải đặc biệt miền bắc | siti casino online | v slot 2040 dimensions | sổ mơ lô đề dân gian | slot 918kiss | sky vegas casino | mơ thấy tiền đánh con gì | fifa hàn | net truyen full |