NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

new slots 2017 | tần suất lô tô miền bắc 100 ngày | fabulous slots | city of games slots baccarat | con trâu số mấy | lacxoi | slots 79 | game bài catte online | slotted disc | fifa mobile hàn quốc mới nhất | casino near me | new casino online 2019 | nhà cái casino uy tín | soi cầu 247 me miễn phí | ho tram casino | casino with poker | nhiệt huyết thần tượng phần 3 | react casino | cách chơi bài casino | casino nb events | 12 bet az | taxi 7 chỗ | exciter 135 giá bao nhiêu | foxin wins again slot | hình ảnh casino | slots lv sign up bonus | casino fundraiser ideas | 360game | casino corona phú quốc | jade magician slot | 368 bet | karaoke vol | las vegas casino | playamo casino | fifa han | 7 spins casino review | boku casino sites | bắn cá quay slot | quay thử xổ số quảng ngãi giờ hoàng đạo | visa electron casino | extra chilli slot |