NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

dimm slots là gì | spokane casino | casino belge | link vào 1xbet | bán cá hổ bắc tphcm | pharmacie casino montpellier | ku casino apk | luckland casino review | california casinos list | 101tv bóng đá | ku vip slot | mơ thấy thắp hương | william casino club | vvn88 | fat rabbit slot | zone casino msn | tải shopee | best mobile slots game | tasmania casino | vô địch quốc gia thổ nhĩ kỳ | soi keo ngay mai | sao 28 win | online casino roulette 10 cent | 777win casino | miter track stop for t slot | dự đoán xs ninh thuận wap | mega moolah slot | casino games | ketqua net 60 ngày | vtv16 | cuclacnet | aruba 2930m 48g 1 slot switch | bonus member baru slot | tạo tên pubg đẹp | beach life slot | situs slot online terbaik | thong ke giai dac biet theo nam | thông kê tần suất loto | cách xóa trang trống trong word |