NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot games | online casino no deposit bonus codes | time slot booking | pullman reef hotel casino cairns | cascading reels slots | 5 slot map device | mobile casino canada | casino trực tuyến khuyến mãi | igt slot games | tram vun huong phai tap 40 | eimi fukada đến việt nam | casino bonus deutschland | tải play together miễn phí | nz paysafe casino | casino source code | đăng ký 1 slot | let it ride casino game | dàn đề 10 số | casino in goa | casino poker table | juegos de casino online gratis | legal casino | bói bài tây 52 la | saigon casino | phim casino royale | mobile casino echtgeld | soi cau hcm chinh xac | casino sài gòn | dunder casino | xo so truc tiep 3 mien minh ngoc | fika casino | free slot machines with bonus | fantasy fortune slot | nằm mơ thấy cứt | slot icon | tair | hai số cuối giải đặc biệt miền bắc | soi cau tg | w88 slot | carousel casino | nhạc karaoke hay | elk studios slots | fabet live |