NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

ho chunk casino dells | bigvip slot | can you cash in casino chips anywhere | casino trực tuyến m88 | steam tower slot review | aspers casino logo | night rush online casino | stainless steel slotted spoon | vệ sinh buồng đốt | casino max bonus codes | free online video slots | conan tập mới nhất | thevang tv | new slots 2017 | xs max 128gb | đánh bài trực tuyến casino | tim ban tren zing me | mu alpha test | fat rabbit slot | slot meaning | kubet casino | cairns casino | lộc 79 win | xuatnhapcanh hochiminh | x16 lane graphics slot | cởi áo | how many slots for asia in world cup | slots for fun | xổ số bạc liêu 25 tháng 1 | gamehayvl | hot slots | slot game online for mobile malaysia | casino hu | free slots machines with bonus feature | how to play the penny slots | mannhan tv | vuacuopbien | casino đồ sơn đóng cửa | nhà cái uy tín nhất việt nam | casino thomo | city casino online | tại ku casino cho pc |