NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino gold rush | online casino boss | makro | electronic slot machines for sale | postgres replication slots | pullman reef hotel casino cairns | vua tro choi yugioh tap 86 | flash online casino | doraemon tập dài | online casino verification | viec lam o casino campuchia | xổ số cà mau ngày 20 tháng 6 | yukon gold casino | intertops casino | ph casino | mơ thấy chó | online casino games for money | đá gà trực tiếp casino 67 | doraemon tap dai | jackpotcity com casino en ligne | xem ngày sinh | live house casino | tai zindo | trang chu fang69 | gunny mobi online | mobile casino no deposit bonus no deposit | casino queen | chot lo | double up casino slot machines | 9club casino | tai game naruto đại chiến | poe map device 5 slots | best no deposit casino bonus codes | slotomania slot | casino royale online gambling | gbox | slotland casino | spin palace casino real money | thống kê giải đặc biệt theo năm | nhacai88 | cửa gió slot | igt slot games | casino online uy tin | casino philippines | golden goddess free slot machine | tisotructuyen | timber la gì | lịch thi đấu playoff lck |