NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

las vegas sun casino | thống kê lô | casino 67 | hot slots | gold party casino free slots | free casino slots with bonus | jade magician slot | dream slots | online slots no deposit | m99 online casino | 100 ladies slots | dự đoán xổ số bình dương hôm nay | pci express 3.0 x4 slot | keo bongda888-V5 6 1 | casino phú quốc tuyển dụng mới nhất | online casino providers | tên kí tự game | casino night attire | quay slot rong vang | photobooth casino | casino phượng hoàng bắc ninh | ku casino app | game pikachu online | 16 ram slot motherboard | tro choi babybus | live dealer casinos | 0169 đổi thành số mấy | nạp tiền betway | w88 is | new online casinos 2015 | tần số loto | gw2 enrichment slot | win99 casino | slot cars | slot seal | elvis the king slot | online casino slots | background casino | 100 ladies slots | lịch world cup 2024 |