NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

dead target | rolling hills casino hotel | best slot machines at borgata | casino clipart | best slot machine games | retro reels extreme heat slot | xoilac1 | ca cổ phạm lãi biệt tây thi | u23 dubai cup | trực tiếp bóng đá keonhacai2 | dubai casino | cmd368 tv | joker123 slot | fifa han | casino chau doc | willy wonka slots | sportsnation casino | tiffany mills slots | playamo casino | linh kiện 789 com | 999 slots quay hũ thần tài | blackjack online casino live dealer | cổphieu68 | vip casino | cái lò tôn ôm cái lò gạch | giải đặc biệt năm | new slot sites no deposit | casino royale vietsub | đề hôm nay đánh con gì | slot filling nlp | kết quả xổ số miền bắc 200 ngày trước | slots animal | slots free spins no deposit | druid spell slots | minecraft 1 18 | winner casino erfahrungen | deposit 3 casino | casino trilenium | din casino bonus | hiệp khách giang hồ tập cuối | top online casino that accepts neosurf | slots vegas slots | photobooth casino |