NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

marina bay casino singapore | vo lam 777 slot | wild swarm slot | vvn88 | lucky 888 casino | slot games wiki | đề về 02 hôm sau đánh con gì | fabulous slots | laser fruit slot | land slot | sam loc bigkool | slot la gì trong free fire | app đầu tư kiếm tiền asideway | fan8 vin | chơi casino online | aruba 2930m 48g 1 slot switch | odawa casino | nagaworld casino | funky monkey slot | trực tiếp bóng đá bongda365 | tucson casinos | types of casino games | casino vtcgame vn | slot machine java | golden goddess free slot machine | win777 casino | u turn slot | slot in angular | msi gl62m 7rdx ssd slot | hoá ra em rất yêu anh tập 20 | slot giochi | how far is chumash casino from santa barbara | khu đô thị lideco trạm trôi hoài đức hà nội | casino tumblr | soi cầu xsmt win2888 asia | luxor slots | tải app ku casino | slots animal | casino en linea mexico | casino bonus games | mơ thấy người chết sống lại | trực tiếp đá gà casino |