NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

888 casino no deposit bonus | lớp học đề cao thực lực manga | city casino online | global live casino | dự đoán an giang | laptop888 | tylenhacai | cách xóa trang word | con số may mắn lịch ngày tốt | ddowload zalo | spokane casino | betvictor live casino | felix casino royale | chơi casino trực tuyến | medusa casino | casino hà nội | xem truyen hinh vtv3 hd | bé tập đánh răng | casino kubet | happyluke casino trực tuyến | xoiac | ảnh căn cước công dân | soi cau vip xsmb | cách xóa trang trống trong word | casinos in asian countries | đề hôm nay đánh con gì | biggest online casino uk | rồng bạch kim 666 cầu rồng bạch kim chuẩn | giải đặc biệt cả năm | đề về 58 hôm sau đánh con gì | thiendia | 247 casino | ibongda nhan dinh | mobil casino oyunları | vanphongdientu | pullman reef hotel casino cairns | cascades casino | lucky 88 slot machine | jammin jars slot free | lộc 79 win | tham khao xs khanh hoa | ketqua100ngay | juegos de casino online gratis | trò chơi zombie | nagaworld casino |