NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

video slot bonus | luckland casino review | thống kê giải đặc biệt hai số cuối | kaiju slot | casino slot games | bingo and slots | mơ rắn | bet365 casino bonus | tần xuất lo to | surface pro 7 sd card slot | quay slot truc tuyen | casino boni deutschland | casino online srbija | casino phu quoc | canberra casino hotel | bk8 casino | de ve 02 | choione | holy moly casino slot | nextgen free slots | kairat almaty vs | chai xịt bóng xe | penthouses cuộc chiến thượng lưu 3 tập 13 | cách nấu xôi đậu phộng | voucher shopee 1 triệu | bet365 tieng viet | ku11 today | iwin888 | harley davidson slot machine | vip slots review | dnailis 2021 | time slot booking | bonus member baru slot | ô zê | casino online en directo | club slot | vao ibet weebly | spin casino live chat | w540 ram slots | sun pazuru tài xỉu ios | trực tiếp bóng đá keonhacai2 | slot antenna | all irish casino | monte carlo casino monaco | wolf hunters slot | tijuana vs | giải vô địch brazil | casino slots real money | lq mod skin | happy luke casino |