NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

sakura thủ lĩnh thẻ bài phần 2 | bắn cá slot | cô vợ mẫu mực tập 1 | cau dep 88 | james bond casino royal | b79 club apk download | macao du doan | slot book of ra | rumpel wildspins slot | casino trưc tuyên | nhan nick | 6 slots poe | xsmnchunhat | xổ số may mắn | bar 7 casino | online casino roulette 10 cent | marina bay sands casino | lịch đá bóng hôm nay seagame | xs max 128gb | tải 888 casino | live casino free play | web casino | casino trực tuyến việt nam | slot studio | mơ thấy ma đánh con gì | xổ số đồng nai ngày 20 tháng 04 | đá gà casino trực tiếp hôm nay | gia vang 9999 nam 2009 | bet slot | vwin com | hotels with casinos | mơ thấy cứt | ket qua 7 | slots in maryland | bingo and slots uk | corona casino phu quoc | vuacuopbien | clip của diễn viên về nhà đi con | mobile casino | mississippi online casino | fun88 nhanh | slot terbesar | the witcher 3 skill slots | dự đoán xổ số quảng ngãi thần tài | jefe casino | western slots |