NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

khu rừng nhỏ của hai người tập 11 | j88 | qq288 mobile | eagle pass casino hotel | xin một slot | kubet casino | ba giai tu xuat mp3 | soi cau 666 mien phi | tai zalo ve dien thoai | tin chuyển nhượng chelsea | slot vương quốc vàng | chumba casino app | ku trò chơi casino | caravelle hotel casino | hotline slot | hotline slot | chơi cá cược thể thao casino | slotted hole design | dragon fortune slot machine | slot casino gratuit | rampart casino vegas | star casino sydney | burning hot slot | conan tập mới nhất | thống kê tần suất lôtô | fifa nhật bản | bonos de casino | yui hatano | players paradise slots | hotels with casinos | private casino party | fruit shop slot machine | dell vostro 3578 m2 slot | g casino online | fruits kingdom slot | ku casino top | casino holiday packages | game h5 la gì | druid spell slots | ongame 222 | momo app |