NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

seneca resort and casino niagara falls ny | stainless steel slotted spoon | free online video slots | du doan an giang | gaminator slot | casino night | free slot games with bonus rounds | chrome casino | nhà cái game slot | quay thử xsmn 168 | casino sign up | zen casino | mơ thấy mèo mướp | tên kí tự game | sdg777 | legal casino | keobongdahomnay | casino thomo | chinese casino game | 368 bet | lucky time slots | 24 vina | bắn cá 888b casino | play casino games online | bonos de casino | dolphin gold slot | mơ thấy đưa tiền cho người khác | foxwoods casino to mohegan sun | vệ sinh buồng đốt | how to get attunement slots dark souls 3 | jetspin casino | thuyết minh về một danh lam thắng cảnh | câu hỏi rung chuông vàng | dự đoán xsmb xo so me | soi kèo iraq indonesia | fat rabbit slot | join casino | house of fun slots free coins | liên quân modpure co | vòng quay kim cương free fire | clara lee | xstp thứ 7 | nằm mơ thấy dây chuyền vàng đánh đề con gì | vip casino | magisk manager | slots garden bonus codes | nằm mơ thấy nhiều cua đồng | p3 casino online |