NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

link sopcast bong da | những bài hát karaoke hay cho nam | thông kê tân suất loto | kèo thơm hôm nay | slots lv bonus | thư viện hmu | xổ số an giang ngày 25 tháng 2 | xsthantai | agen judi live casino | john wick 1 | tilebong88 | thienhabet nett | cô dâu gán nợ tập 1 | las vegas casino online | ok88 | nhà cái casino uy tín | kqxs30 | wink slots promo code | viettel telecom gần đây | truc tiep bong da tv | game slot mới nhất | best live casino uk | big time gaming slots demo | code fifa online 4 | 1429 uncharted seas slot | truyện ngôn tình | 777 casino | gday casino mobile | babushkas slot | toolgame | bongda88 com | slot drain | tai zalo ve dt | choctaw casino | free slot machine play | spokane casino | xổ số miền bắc minh ngọc | slots that pay cash | kqsx30 | red baron slot machine | slot id minecraft | game slot moi | house of fun slots free coins | trang casino | xổ số cà mau ngày 20 tháng 6 | thống kê tổng | an lạc phùng khoang | sxhn mien nam | xsmb hôm nay đánh con gì bà con ơi |