NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

pinball slot machine | nguyên nhân dẫn đến chiến tranh thế giới thứ 2 | xổ số ngày 27 tháng 6 | xuan ha thu dong tap 34 | online slots deutschland | truyện ngôn tinh | trusted casino | land slot | taxi 3d | du doan xsmn dac biet | gói cước viettel wifi | buran casino | free mobile slots | bingo and slots uk | royal casino online | casino online slot | ket qua 7 | casino ở campuchia | lịch cúp điện bình phước | kostenlose slots | anonymous casino | cô vợ bắt buộc tập 11 | stainless steel slotted spoon | gala casino 10 pound free | slot god of wealth | slotty casino | casino 1995 trailer | đăng ký làm đại lý ku casino | casino su | mac casino online | tvhay org hoat hinh | fifa han | bán cá hổ bắc tphcm | vue slot event | penny slot machines | hình ảnh casino campuchia | lịch đá bóng aff cup 2021 | titanic slot machine | phatloc |