NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino portugal online | golden cherry casino no deposit codes | thống kê giải đặc biệt tuần tháng năm | ngây thơ miền bắc | đê chèm | lịch chung kết world cup | lichthidau bongdahomnay | slot pintu | king of macedonia slot | gw2 enrichment slot | isa slot motherboard | smart card slot | planet 7 casino review 2019 | kêt qua xô sô mb | slot array antenna design | chat zalo me trên điện thoại | đề về 58 hôm sau đánh con gì | chat zalo me trên điện thoại | link 90p | gala casino 10 pound free | casino tuyển dụng | bitcoin casino club | venus bị bắt | paradise found slot | hp 88 ink | fbb88 | expresscard slot egpu | shopee app | trực tiếp bóng đá bongda365 | sun city casino | tải teaching feeling | play casino games online | 888 slot | background casino | slot weld | extra chilli slot demo | xổ số bạc liêu 25 tháng 1 | khu đô thị lideco trạm trôi hoài đức hà nội | vé vào casino phú quốc | slot online | how do slot tournaments work | nằm mơ thấy nhiều cua đồng | fim de che maya |