NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mod skin liên quân | casino del bel respiro | code fifa online 4 | slots real money | ios 15 6 beta 3 | warlords crystals of power slot | dien dan xs ba mien | ninja slot | m88 sảnh casino | irish casino sites | truyen ngon tinh | dự đoán xổ số bạc liêu | thống kê kqxsmb theo tổng | casino online ganhar dinheiro | booking time slots online | motörhead slot | birds on a wire slot | billionaire casino slots 777 | kết quả xổ số miền bắc 200 ngày trước | online casino real money | thử thách nghiệt ngã phần 2 tập 1 | thong ke giai dac biet theo nam | casino gold rush | du doan ket qua xo so quang ngai | lịch bóng chuyền nữ hôm nay | free casino bonus | lời thì thầm của những bóng ma | xosothantai | trực tiếp casino | free cash slot games | casino live house | slots free spins | 1gom1 | lịch nghĩ tết ngân hàng | choctaw casino | juegos de casino online | gopher gold slot | playtech casino software | kubet casino |