NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

sands casino | dafabet | maplestory pocket slot | the royal casino | miter track stop for t slot | betfair live casino | cherry slots casino | du doan mb | ban acc fo3 | game slot doi the cao | tên ký tự | xapk là gì | real madrid đội hình | foxin wins slot | chung ket the gioi lmht 2017 | thần tai mn | casino leon | choi game roblox | casino roulette tips and tricks | betphoenix casino | vé vào casino phú quốc | link 90p | jinni lotto casino | best casino slots | link sopcast bong da hôm nay | golden goddess free slot machine | casino in tokyo japan | bet365 casino | đề về 68 hôm sau đánh con gì | casino trực tuyến 143 | đánh bài casino | đăng nhập ku casino | tiến lên đếm lá | max attunement slots dark souls 3 | pink casino no deposit | baccarat casino | download zalo | free deposit slots |