NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot meaning | casino việt nam ở đâu | korean bj com | crank handle slot re2 | casino de barcelona | online casinos that accept neosurf | casino vân đồn | casino action | kí tự tên liên quân | giải đặc biệt tuần tháng năm | book of ra deluxe slot | phẩu thuật thẩm mỹ webtretho | tai game chem hoa qua ve dien thoai | huawei sd card slot | zeus casino | 777 casino games | don than | slots vegas slots | slotty casino | tạo dàn đề 2d | truyện ngôn | background casino | jefe casino | ketquasoso | tair | magyar online casino | yêu nhầm chị dâu tập 29 | agree gì | slot reds | casino med trustly | giờ reset fo4 | quay trực tiếp bóng đá hôm nay | mystic lake casino map | casino là gì | casino phú quốc mở cửa | napthenhanh | 6696 | how to play slots | xem bói bài tây | game line 98 classic | đá gà casino trực tiếp hôm nay | trò chơi casino trực tuyến |