NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

thủ lĩnh thẻ bài phần 2 | full slots | spela slots | mơ thấy vàng | extra wild slot | caesars slots 100 free spins | fun casino online | soxome | casino philippines | fifa mobile nexon nhật bản | slots and games | new casino not on gamstop | salary blackjack dealer | dortmund đấu với augsburg | kết quả xổ số miền bắc 200 ngày trước | thống kê xsmb năm 2020 | potato222 | slot pocket | slots slots | hellboy slots free | lucky casino free spins | thống kê giải đặc biệt tuần tháng năm | bảng đặc biệt năm 2002 | super casino slots | lichthidau bongdahomnay | great blue free slot machine | ag ld 789 | slot bonus | launceston casino | slotted post | tạo dàn 3d | ku casino | planner with time slots | thư viện phật giáo | pound slots | kí sự thiếu niên | best casino guide | hybrid slot | slot icon | kame | chumba casino codes | slot no hu | vinagames | sxmn30ngay | 888 slot | chuyen nhuong chelsea | seven sins slot | hiệp khách giang hồ tập cuối |