NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cherry jackpot casino no deposit bonus | bond 007 casino royale | cách chơi casino luôn thắng | truyen tranh sex mau | mainboard m2 slot | spinaru casino | bingo live | bắn cá tam quốc online-nâng cấp | lịch cúp điện bình phước | dudoanxoso mien trung hom nay | flux slot | bingo sites with slots | socvip 3 club | xổ số bạc liêu 25 tháng 1 | monte carlo casino monaco | genting casino in london | well of wonders slot | virgin slots mobile | nha cai88 net | slot game là gì | xiaomi mi 8 lite sim card slot | casino slot oyna | deutsche casinos mit bonus ohne einzahlung | gem slot | slot online asia | ku trò chơi casino | casino solverde online | same day withdrawal online casinos | vegas casinos | xem boi bai tay | seo for casino | thống kê loto | online casino | ai my nhan zingplay | online casino bonus free spins | burning desire slot review | montezuma slot | bigvip slot | hack game slot | casino de veneza | casino de barcelona | link 90p | raging rhino casino |