NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

new mobile phone casinos | casino trực tuyến w88 | trường nguyệt tân minh | fang69 tren may tinh | ketquaxoso miennam thu 6 | dong phym | casino portugal online | gà mạng | dự đoán xổ số miền bắc ngày mai | best casino slot websites | dự đoán xổ số quảng ngãi thần tài | cởi quần áo | fifa mobile nexon hàn quốc | ole777 ole77 | seven sins slot | casino trực tuyến ac | casino online cvproducts | 855crown casino | cutrai | nhacaiee88in | xo so mien bac minh ngoc | renton casino | game trực tuyến casino | casino trực tuyến việt nam | jackpot strike casino | bet888 casino | laser fruit slot | las vegas sun hotel & casino | lich thi dau u23 chau a 2024 | online slots 5 pound deposit | royal casino | b88 ag com | king slot | w88 vin shop | neue online casinos | online casino | big slot wins | m88 com live casino | vatgia | netviet | ảnh nobita |