NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino mga | p3 casino online | fafafa gold slots free coins | tai game danh bai beme 2015 | casino hotel for sale | moc bai casino | casino de veneza | viec lam o casino campuchia | thủ lĩnh thẻ bài phần 2 | ket qua vong loai world cup 2018 | doc truyen ngon tinh hay | blv giàng a phof trực tiếp | casino leon | taitrochoimienphi | charlestown races and slots | online slots australia real money | xoilac 90phut | wynn casino | fifa mobile nexon hàn quốc | lee sa rang | biggest online casino | casino catalogue | slot pattern | casino pullman | casino room casino | fifa mobile hàn quốc mới nhất | tai game fan slot | lexar usb 3.0 dual slot reader | fruit spin slot | new slot sites no deposit | online slots tips | đặc biệt theo năm | lite bao moi | parx casino bonus codes | juegos casino dinero real | game khung log | energy casino 20 | dafu casino | 888 casino app | judi slot pragmatic | appointment slots | moba là gì | dự đoán xổ số bình thuận | pci express 3.0 x4 slot | hà lan senegal |