NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

mobile slots pay by phone bill | dàn đề 36 số nuôi 3 ngày | jack and the beanstalk slot | best slots at golden nugget biloxi | ly cay bong mp3 | vao ibet weebly | phủ nano kính | venetian casino | baocaonoibo com | sweet alchemy slot game | chot lo | soi kèo iraq indonesia | land slot | game8jp | hong kong casino | 777 casino login | nhận định everton vs burnley | lô khung 247 | aladdin slot machine | thiendiahoi | casinos in st louis area | bài casino | bắn cá slot | kết quả trận tokyo | thống kê lô | free cash no deposit casino | vẽ danh lam thắng cảnh | 777 lucky slots | ma nữ đáng yêu tập cuối | 8 slot toaster | monte carlo casino monaco | cái lò tôn ôm cái lò gạch | slotted | w88 slot | vân tịch truyện | lacxoi | slot club 777 | payment gateway for online casino | cửa gió slot | magyar online casino | máy đánh bạc slot machine | boom casino | slot machine taxes |