NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

cởi quần áo | slot meaning | mac casino online | xs mỹ hạnh | casino ở campuchia | slots heaven review | vn vs jor | casino đánh giá | play casino games online | casino definition | big bang theory slots | list of casinos in iowa | spokane casino | new slots 2017 | antique slot machines for sale | casino casino bonus | kết quả xổ số miền bắc 200 ngày trước | crank handle slot re2 | tại go88 vip | slot hu | bets com casino | casino 888b | soxome | slot machine card | casino hạ long | casino chau doc | sòng bài casino | beste casino app | soi cầu mn | chot lo to | iosgods | bán cá hổ bắc tphcm | thống kê giải đặc biệt hai số cuối | casino hoi an | casino hotel | starspins slots | du doan lodephomnay | ongame 222 | fallout new vegas casinos | melbourne fl casino | lucky8 casino | steam poppy playtime - chapter 3 apk | full slots | ai my nhan zingplay | thống kê hai số cuối | game slot mới nhất | bongdalu | hot slots |