NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

thần ẩn tập 15 | top 10 online casino slots | live casino online canada | free slot machines with bonus | soi cau hcm chinh xac | viết thư upu năm 2024 | around the world slot | tuổi sửu mệnh gì | ho tram casino | tai zingplay ve may tinh nhanh nhat | súng pcp giá rẻ | slot là j | eye of horus slot game | asian slot games | xóa trang trong word | caribic casino | desert nights casino | casino night decorations | fruit slots online | w88 casino malaysia | slot 888 dragon | juegos de casino online | singapore casino | aristocrat slots | slot icon | plaza hotel and casino las vegas | kqsxmb100ngay | most secure online casino | robin slot | dell vostro 5470 ram slot | chip casino | 7m cn vn | vietnam casino | slot pocket | xóa trang trong word | casino action | kẻ săn anh hùng | xin một slot | peggle slots | hp 88 ink | quad cities casinos | sexxy tickets 18+ event westgate las vegas resort & casino | express card slot dell latitude | sidewinder slot | paradise found slot |