NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lucky slots casino | tropicana casino online review | edgewater casino | 188bey | sx minhngoc net | g25 | king fishing casino | giấc mơ phát tài tập cuối | signal slot qt | slot casino free | golden goddess slots | penthouses cuộc chiến thượng lưu 3 tập 13 | ninja slot | xổ số đà lạt ngày 9 tháng 04 | đặt cược trái tim | kí hiệu đặc biệt liên quân | slot toto | bongdainfo | casino vietnam | launceston casino | win99 casino | casinos in st louis area | carousel casino | casino watch | xsmnchunhat | casino royale imdb | crown casino đà nẵng | yeu apk | moc bai casino | poker slots online | chăm sóc xe hơi | western slots | mơ thấy chó con | laptop lock slot | lq mod skin | raam slot | slots free spins | truong nguyet tan minh tap 19 | socvip 3 club | surface pro 7 sd card slot | soi cau tg | city of dreams casino | go aircraft odd | Chơi game bài Tiến lên miền Nam miễn phí | nằm mơ thấy nhiều cua đồng | gold eagle casino | casino bonus angebote | thống kê hai số cuối |