NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

Chơi game bài Tiến lên miền Nam miễn phí | lô đẹp 888 | talking stick resort and casino | gold party casino free slots | high variance slots | am muu va tinh yeu tap 520 | epic casino | slotted wooden fence posts | zindo vin apk | casino ở philippin | nye online casinoer | cách nấu xôi đậu phộng | slots in maryland | hoyeah slots | casino near me | how many caesars casinos are there | casino machine games | how to open sim card slot on iphone | dự đoán giải đặc biệt ngày mai 247 | ladbrokes casino no deposit | casino based on | electronic slot machines for sale | ipad 6th generation sim card slot | 78win01 com | w888 casino | top online casino that accepts neosurf | kính lặn bắn cá | aspers casino logo | đặc biệt theo năm | casino bonus calendar | check rank lol | tải app vietlott sms | slot games that pay real cash | cài đặt shopee | dream league soccer 2024 |