NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

slot warframe | nano sim in micro sim slot | gio reset fo4 | kq7 | night rush casino online | k8 casino | casino meaning | tan suat lo to | hình ảnh casino campuchia | titanbet casino | elvis the king slot | casino night attire | betphoenix casino | h reset fo4 | tra bưu điện | spider slot | hai số cuối của giải đặc biệt | samsung galaxy watch sim card slot | pt slot | qq app | lớp học đề cao thực lực manga | trực tiếp tennis djokovic - tsitsipas | fifa mobile hàn quốc mới nhất | best online casino slots | palace slots casino | slot แจก เครดิต ฟรี ไม่ ต้อง ฝาก 2020 | tropicana casino online review | 5 slot map device | tỉ số và tỷ lệ 2in1 | w99 | hit it rich casino games | win777 casino | slot terbesar | casino grande monde | slot reds | what is dedicated slot | cherry slots casino | w88 vin shop | thiendia | slot canyon | casino trực tuyến uy tín poseurink | doithe vn | casino work | casino phú quốc | vinoasis casino | sdt gai goi zalo | dự đoán xsmb xs me |