NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

zindo vin apk | slots animal | slot crazy | du doan an giang | hotels near foxwoods casino | corona casino phu quoc | free welcome bonus no deposit required casino uk | casino golden stone | best slot machine games | bongda88 com | makro | 888 bet casino | your name zing tv | 1429 uncharted seas slot review | xe bus 08 | slot book of ra | max attunement slots dark souls 3 | soi cau mn | stardust slot | play online slot machines for real money | giang hồ phố hoa | skagit valley casino | grosvenor casino slot machines | casino online cvproducts | j88 | macau casino | does my laptop have pcie slot | crown casino bavet | windguru phan rang | spin palace casino review | code free fire ko giới hạn 2021 | casino in goa | 7 vien ngoc | kings romans casino | ma nữ đáng yêu tập cuối | slot sensor | loe ngoe | warehouse slotting | dead or alive slot | best mobile slots game | rocky mountain slots | nettruyen full | game bài casino | soi cau 4 so vip 247 | players paradise slots |