NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

0169 đổi thành số mấy | online casino | malina casino bonus | social | đánh bài casino | bet247 casino | b88 ag com | thống kê tần suất | casino jar | bet365 com casino | happy luke casino | top 100 online casinos uk | casino back room | yandere simulator | bongdalu 38com | rồng vàng slot | casino game code | cách bắt đề kép bằng | nuoi lo khung 247 com | devils number slot | soi cau hcm chinh xac | igram io | caravelle hotel casino | burning hot slot | ok online casino | live casino usa | chumba casino codes | nằm mơ thấy cứt | shadow fight mod | casino pour le fun | dedicated slot | truyện ngôn tình | casino fundraiser ideas | ban ca online 4 nguoi | your name zing tv | xsmb t5 ht | slot die design | best mobile slots | vip club casino | free deposit bonus slots | game slot đổi thưởng | pinball slot machine | single bet | vue component slot | bóng đá tv | thống ke theo tổng | slot club 777 |