NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

link vào 1xbet | free online slots wheel of fortune | xingtu là gì | kairat almaty vs | birds on a wire slot | cá cược casino | monte carlo casino monaco | giai dac biet nam | mơ rắn | 55666 bong88 đăng nhập | raging rhino slot machine | bắn cá slot | casino trực tuyến ac | 888 casino mobile | slots real money | casino nb events | tai epic slot | ku casino | soi cau 288 | slotsmillion casino iphone | holy moly casino slot | nhận định as roma | great wild elk slot | 888 casino no deposit bonus | cái lò tôn ôm cái lò gạch | sơ đồ tư duy tây tiến | soicau mn | online casino roulette 10 cent | casinos en ligne | 200 deposit bonus slots | hanoi casino list | korean bj com | casino in russellville arkansas | chip casino | chuyển từ word sang excel | casino online ganhar dinheiro |