NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

new casino online 2019 | witcher 3 slots slots slots | b79 club apk download | casino abattoir | slotted pipe | vip club casino | free slot games with bonus rounds no download no registration | m88 vin link | jade magician slot | tinh dầu đuổi chuột | soicau mn | pink casino no deposit | online casino slot games | ghep dàn 2d | medusa ii slots | thử thách nghiệt ngã phần 2 tập 1 | casino seo agency | tvhay org hoat hinh | slotted metal | xổ số bạc liêu 25 tháng 1 | slot nghĩa là gì | slotting machine mechanism | slot machine occasion | 7890 | funky monkey slot | siêuno win | dientutuyetnga | agree gì | onebox63 | casino game online roulette | slots nomini | tải zalo về điện thoại | thiendia | cách xóa trang | trang ve thon da mp3 | real casino slot machines | juegos de casino online gratis | xstp thu 7 | casino nap tien bang the cao | casino equipment for sale | genting casinos uk ltd | vip casino | tỷ lệ kèo tv |