NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

kqxsdaklak | m 2 slot | best casino slot websites | lucky casino free spins | prime slots mobile | soi cầu rong bạch kim | online casino games | best live casino uk | adsbygoogle push error no slot size for availablewidth 0 | những bài hát karaoke sôi nổi | đội đặc nhiệm shield | slot machine | xem bói ngày tháng năm sinh | laser fruit slot | 10bet online casino | dafu casino | xổ số tài lộc | bonus casino 777 | casino campuchia mộc bài | vortex casino | lucky slots casino | logan mienbac | casino ở sài gòn | yandere simulator | toàn chức cao thủ phần 3 | online casino deutschland legal | spela slots online | casino ho tram | quay thử xổ số đà nẵng giờ hoàng đạo | wc deur slot | lịch thi đấu playoff lck | fun88 nhanh | casino campuchia mới nhất | 007 casino royale | ok online casino | chumba casino codes | casino grande monde | 188bet casino | tao nick dot kich | freaky fruit slot |