NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lucky 888 casino | cesar casino | dragon king slots | slot parlor | cửa hàng royal casino | trò chơi casino trực tuyến | link sopcast bong da | night rush casino online | m soha | thống kê tổng | video slot machines | casino plus | download zalo | vua tro choi yugioh tap 86 | slots free spins no deposit | vuong quoc vang slot | vwin com | bavet casino | casino bonus gratis senza deposito | tạo dàn 3d | casino vtcgame vn | double up casino slot machines | sodo casino 68 | microsoft office full | soi cau mb 24 | xem bói ngày tháng năm sinh | circus circus hotel casino reno nevada | 12vegas casino | juegos de casino online con dinero real | pullman reef hotel casino cairns | penthouses cuộc chiến thượng lưu tập 7 | casino campuchia mới nhất | twin là gì | casino online dinero real | trò chơi stick war legacy | video slot bonus | lịch đá bóng aff cup 2021 | xổ số ngày 27 tháng 6 | trang casino | bet88 slot | bongdalu 38com | java slot machine source code | kí tự tên |