NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

toàn chức cao thủ phần 3 | 888b casino | xsmb đặc biệt tuần | nvme vs m2 slot | 1 slot nghĩa là gì | yandere simulator | bachkimgiaoan | royal casino online | slot game slotgame.ai | ket qua net 60ngay | prowling panther slot free | caribic casino | trực tiếp bóng đá keonhacai2 | scudamores super stakes slot | kerching casino | xsmn 21 11 2022 | cửa hàng royal casino | insufficient attunement slots dark souls 3 | trực tiếp đá gà casino 67 hôm nay | casino spiele kostenlos book of ra | captain jack slots | mơ thấy tiền đánh con gì | game slot đổi tiền mặt | thong ke loto mien bac | lịch thi đấu carabao cup | miter track stop for t slot | lịch thi đấu carabao cup | casino virtual dinero real | mugen 200 slots | the royal casino |