NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

upu 2024 | pragmatic play slot | lienquan code | seo for casino | tần số loto | sieu nhan cuong phong tap 49 | trusted casino online canada | chuyển từ word sang excel | casino slots real money | celtic casino | 888 slot | cổphieu68 | neue online casinos 2020 | 777bet casino | huge casino | let it ride casino game | salary blackjack dealer | dàn đề 36 số nuôi 3 ngày | best slot machines in las vegas | thai casino online | boi bai tay | app casino | gói cước wifi viettel | gnome wood slot | tructiepdagathomo | trang ve thon da mp3 | honey select | vegas diamonds slot | best rated online casino | casino billboard | mơ thấy rắn trắng | xóa trang trống trong word | casino vietnam | thống kê tần suất loto | bj39 | sv388 casino | soi kèo 7m | casino gangster | trusted casino online canada | ae888 casino | huyền hạo chiến ký | dien dan ngoc rong | vue slot event |