NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

free 5 no deposit casino uk | dự đoán xs ninh thuận wap | jackpot party slot game free online | miếng dán khe cửa đa năng sealboy slot | xe exciter 135 | biloxi casino buffets | james bond casino royale | đầu số 0127 đổi thành gì | quay man club | fruits kingdom slot | 2xsport | xổ số trà vinh ngày 29 tháng 04 | online casino deutschland legal | đề về 59 hôm sau đánh con gì | bets com casino | thống kê giải đặc biệt năm | theo dõi nettruyen | casino 999 | cô vợ mẫu mực | casino in victoria canada | đề về 11 hôm sau đánh con gì | tan suat lo to | casino moc bai | casino online australia real money | load letter paper in manual feed slot | thủ lĩnh thẻ bài phần 2 | đá gà trực tiếp casino thomo | harrahs casino online reviews | win 777 casino | cá cược casino | casino software provider | app mod skin liên quân | casino trực tuyến uy tín nhất | slots for fun |