NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

lich bong da u19 dong nam a 2022 | 2 so cuoi | w88 vin shop | code football master 2 | bar 7 casino | 2 so cuoi | đăng ký làm đại lý ku casino | doraemon nobita và vương quốc robot | slotsmillion casino | real slot machines online | chống chuột ô tô | đá gà casino 2017 | malina casino bonus | thống kê lo | nightrush casino online | fb88in | 888b casino | bet69 bet169 online | biggest online casino uk | casinos in st louis area | thái bình thiên quốc | web casino 777 | casino nap tien bang the cao | the witcher 3 skill slots | online casino blog | turnkey online casino | casino peru | free money casino | netbet casino live | booking time slots online | pocket casino | rebuy stars casino | casino queen | slotted brake rotors | casino 2go | free deposit bonus slots | charlestown races and slots | sv388 casino | m88 sảnh casino | giải đặc biệt trong tuần | soi cau 288 | sodo casino 68 | pci card in pci express slot | thong ke tan suat loto | blue chip casino hotel and spa | casino ở hà nội |