NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

rio all suite hotel & casino | kendra lust | tinder web | list nhạc karaoke | vô địch brazil | societal | msx 150 | free deposit slots | game chú mèo máy đến từ tương lai | soi keo ngay mai | thần ẩn tập 15 | 1429 uncharted seas slot review | boi bai tay | reel gems slot | kết quả trận tokyo | casino việt nam ở đâu | hanoi casino | casino online en directo | mu88 casino | đăng nhập jun88 jun88.casino | casino 67 | 2so cuối giải đặc biệt | online casinos that accept neosurf | surface pro 4 sd card slot | fruits n royals slot | western slots | thống kê loto miền bắc | top 10 online casino | wonky wabbits slot | vn88 casino | slot machine formula | online slot machines uk | fabet live tv | new slot machines 2017 | vân tiny lấy kem ở đâu | ibet789 | bán cá hổ bắc tphcm | phim casino royale | hu vang slot | casino hồ tràm | lara croft slot | cau 568 |