NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

new online casinos 2015 | ice ice yeti slot | giải rubik tầng 3 | deposit 3 casino | ket qua 1 | game line 98 classic | m 2 slot | thong ke loto | kết quả xổ số max 3d | spela slots online | reel money slot | fan8 vin | wishmaker casino | spintastic casino | types of casino games | slotted metal bar | phan tích xsmb | casino renovations | slot technician | casino 1995 | diamond casino and resort | online casino not registered with gamstop | mod shadow fight 2 | 2bong sbobet | casino online uy tín | lucky time slots | bet69 bet169 online | hotel and casino | giờ reset cầu thủ | it casino | lich thi đấu v league 2024 | gbox | wild swarm slot | medusa ii slots | usb dongle with sim card slot | nowgoal tieng viet | xổ số ngày 27 tháng 6 | casino app mit startguthaben | casino hồ tràm | web casino | sbobet di dong |