NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

best slots at golden nugget biloxi | mơ thấy rắn trắng | nằm mơ thấy xác chết đánh số gì | fifa nhật bản apk | đặt cược trái tim | cherry jackpot casino reviews | extra wild slot | celtic casino | casino jefe erfahrungen | casinos mobile francais | slots la gì | tsumugi | g25 | ag live casino | 888bet casino | dự đoán xsmb xs me | beste velkomstbonus casino | wild shark slot | casino quotes | panda slots | melbourne fl casino | captain jack casino download | casinos in washington | mơ thấy chó con | venetian macao casino | bắn cá tiền vàng | tạo dàn 3d 4d | slots and poker | hợp pháp hóa casino trực tuyến ở việt nam | global live casino | ban yourself from casino | truck simulator vietnam modpure | lq mod skin | 7 viên ngọc rồng mới nhất | synthesizer | casino 777 casino | country club casino | casino hội an | how to play the penny slots | how to enable 2nd ram slot | bj39 | slot online idn | luv slot | best casino for slots in vegas | cach nap zing xu | casino reviews nz |