NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

casino bắc ninh | happyluke casino trực tuyến | online casino real money | online slots 5 pound deposit | mesin slot | crown bavet casino hotel | dien dan ngoc rong | casino hoi an | ignition casino mobile app | thrills casino review | truyện ngôn tình việt nam | slot แจก เครดิต ฟรี ไม่ ต้อง ฝาก 2020 | monopoly slots | soi cau mn | bingo live | viec lam o casino campuchia | slot id | mạt sắt là gì | casino in ho chi minh | tải bắn cá hoàng kim apk | 3cang | slot game là gì | miếng dán khe cửa đa năng sealboy slot | free 50 slot mumble server | 77betsports slots | bwing88 | game slot đổi thưởng moi nhat | samsung tablet with sim card slot | turnkey online casino business | tan suat | kết quả bóng đá nữ olympic tokyo | sg online casino | casino in tokyo japan | hotline slot game | play jackpot slots | các loại bài trong casino | best online casinos for us players | slot cars | stt chất | slot spiele | đánh cắp giấc mơ tập 1 | ket qua 7 | jeetwin casino review | thienhabet nett | philip slot | dragonz slot | maplestory v matrix slot enhancement |