NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

chơi casino trực tuyến chỉ có thua | golden galaxy hotel & casino | super 7 casino | hellboy slots free | how many slots for asia in world cup | game slot đổi thưởng | mannhan tv live | đánh bài casino | hack slot gamvip | how to open sim card slot on iphone | fun88 casino | web casino 777 | royal casino online | slot pintu | hanoi casino | minecraft 1 18 | casino saigon | jackpot slots games | win2888 casino | đại chiến kame | boku deposit casino | choi roblox | roblox mien phi | poker star casino online | societal | wynn casino | paypal casino mobile | loi giai hay lop 5 | real cash online casino | các loại bài trong casino | wild vegas casino review | hợp pháp hóa casino trực tuyến ở việt nam | game bai slot | hotel casino des palmiers hyeres | slot til leje | ánh dương lòng tôi tập 13 | clara lee | lô đẹp 888 | slots nghĩa là gì | 12vegas casino | free 50 slot mumble server | thống ke theo tổng | game slot tặng tiền | nhâp code liên quân mobile | poe map device 5 slots | casino back room | slot là gì | vua hai tac zing | rolet casino |