NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

choione | dự đoán xsmb xổ số me | bet888 slot | zen casino | xe đi casino thomo | lịch nghĩ tết ngân hàng | f88 casino | hot slots | code oze | chung ket the gioi lmht 2017 | giải đặc biệt tuần tháng năm | casino watch | co up sanh rong | casino abattoir | slot vlt | express card slot dell latitude | parx casino bonus codes | đặc biệt tuần tháng năm | cá cược casino | cach nap zing xu | đá gà trực tiếp casino thomo | dolphins pearl deluxe slot | chơi cờ othello online | maplestory pocket slot | quay trực tiếp bóng đá hôm nay | slot meaning | kết quả loto | casino đồ sơn | leovegas casino bonus | golden hoyeah slots hack | palace slots casino | hương vị tình thân tập 34 full | slot online idn | casino hạ long | xóa trang trắng word | ssd wifi slot | chơi cá cược thể thao casino | energy casino 24 | hotels near foxwoods casino | ebet casino | chơi cá cược thể thao casino | xổ số vietlott mega | thong ke lo | nextgen slots | m99 asia | gday casino mobile | casino nb events |