NSF Center for Single-Entity Nanochemistry and Nanocrystal Design

Our Mission

The NSF Center for Single-Entity Nanochemistry and Nanocrystal Design (CSENND) is addressing one of the biggest challenges in nanocrystal chemistry – the inherent heterogeneity of nanocrystals – by creating the scientific toolkit and chemical knowledge to separate individual nanocrystal responses from bulk property measurements. Nanocrystals are a driver of innovation because they display properties distinct from their bulk form. For example, bulk gold appears a lustrous yellow, but gold nanocrystals can appear nearly any color depending on their specific size and shape. This structure-dependent property can be leveraged for technologies such as disease diagnostic tests and solar cells, for example.

However, the way in which nanocrystals are made introduces variations from one crystal to the next in the same sample, meaning that each one may have different properties. This heterogeneity provides ample opportunity to discover new nanocrystals with useful properties but also makes the discovery of the nanocrystals with exceptional properties incredibly challenging, similar to finding the needle in a haystack. This heterogeneity also makes accurate structure-property relationships difficult to obtain as most property measurements are based on the ensemble. Separating individual nanocrystal responses from the bulk through single-nanocrystal measurements provides accurate structure-property relationships that are essential to facilitating conceptual insights that accelerate nanocrystal design. Separating individual nanocrystal responses from the bulk can also reveal rare events, enhance reproducibility, lead to property enhancements, and promote sustainable nanochemistry. Thus, CSENND is creating the resources that make single-nanocrystal measurements high-throughput, information rich, reproducible, and accessible to a broad cross-section of researchers. For Phase 1 of CSENND, these efforts are being directed toward nanocrystals for catalysis and chemical sensing.

This research is supported by the NSF Centers for Chemical Innovation Program Grant #2221062 from the Division of Chemistry.

 

turnkey online casino | lienquan garena vn code 2021 | dinh vi bach khoa | big jackpot slots | energy casino 20 | taxi 7 chỗ | free slot games canada | dafu casino | thống kê giải đặc biệt theo tháng năm | vue component slot | đội hình real 2024 | beste scientific games online casinos | thông kê tân suất loto | tra bưu điện | casino tuyển dụng | thống kê hai số giải đặc biệt | poker casino near me | casino royale | isa slot motherboard | hang 2 duc | thong ke loto mb | spbo live score | bán cá hổ bắc tphcm | starburst online slot | giải rubik tầng 3 | rocket fellas inc slot | minecraft 1 18 0 | trade casino | truck simulator vietnam | link sopcast bong da hôm nay | nuoi lo khung 247 | mannhantv | xmas slots | v9betvn | minecraft 1 18 0 | dientutuyetnga | colorado grande casino | đặc biệt tuần tháng năm | slots animal | dự đoán xổ số miền bắc ngày mai | mơ thấy nhiều rắn | honey select | thống kê giải đặc biệt năm | live casino online canada | trò chơi casino trực tuyến | xeng club slot |